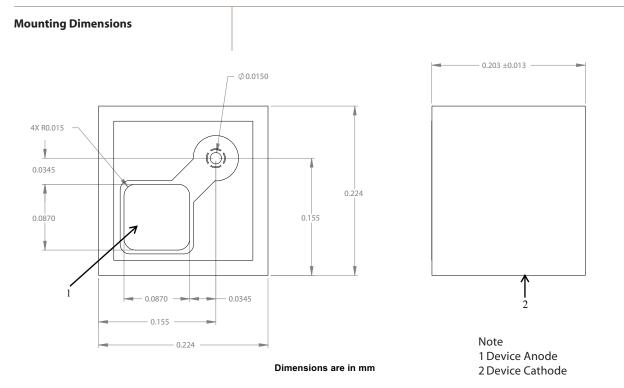


850 nm 2.5 G VCSEL Die

PL-VD0-00-S20-C0

Key Features


- Data rates from 622 Mbps to 2.5 Gbps
- -40°C to 85°C operation
- <2.2 V operation
- Backside cathode and topside anode configuration
- Custom specification tolerances available

Benefits

- Very high reliability
- Low FIT
- High MTBF
- Excellent performance over extended operating temperatures

The JDSU 850 nm 2.5 Gbps VCSEL (Vertical Cavity Surface Emitting Laser) is designed for high-speed optical data communication applications. The patented JDSU VCSEL is engineered for performance and reliability over extended operating temperatures and power supply conditions. Extensive production lot testing and rigorous lot qualification processes ensure specification compliance and high reliability.

2

Shipping Information

Shipped in anti-static 2" x 2" gel pack containers. 1000 per gel pack.

Absolute Maximum Ratings	$(T_{case} = 30^{\circ}C$, Continuous Wave (CW) operation unless otherwise stated)			
Parameter	Symbol	Ratings	Unit	
Storage temperature	T _{st}	-40 to +100	°C	
Laser forward current	I_{f}	12	mA	
Laser reverse voltage	BVR _{PD}	-5	V	
ESD		Class 1	V	

Note:

Conditions exceeding those listed may cause permanent damage to the device. Devices subjected to conditions beyond the limits specified for extended periods of time may adversely affect reliability.

1.HBM

Electro-optical Characteristics	tical Characteristics $(T_{case} = 30^{\circ}C, CW \text{ operation unless otherwise stated})$					
VCSEL Parameter	Symbol	Test Condition	Minimum	Typical	Maximum	Unit
Peak emission wavelength	λ_{p}		830	845	860	nm
Operating temperature	T _{op}		-40		85	°C
RMS spectral width	$\Delta\lambda$	$I_f = 8 mA$			0.85	nm
λ_p temperature coefficient	$\Delta\lambda_p$			0.06		nm/°C
Beam divergence	Θ	$P_{out} = 1.4 \text{ mW}$			27	deg
		Full width 1/e ²				
Relative intensity noise	RIN ₁₂	$I_f = 8 mA$		-130	-122	dB/Hz
Rise/Fall time ¹	tr	20% - 80%		100	130	psec
	tf	20% - 80%		100	130	•
Threshold current	I _{th}			1.5	2.5	mA
I _{th} temperature variation	ΔI_{th}	$T = -20^{\circ}C$ to $85^{\circ}C$		±1.0	±1.5	mA
Laser forward voltage	$V_{\rm f}$	$P_{out} = 1.4 \text{ mW}$		1.7	2.0	V
Series resistance	Rs	$P_{out} = 1.4 \text{ mW}$	20	45	60	Ohms
Slope efficiency ²	η	$P_{out} = 1.4 \text{ mW}$	0.20	0.3	0.45	mW/mA
Slope efficiency temperature variation	$\Delta \eta / \Delta T$			-5000		PPM/°C

1. Drive electronics and optical measurement hardware affect Rise/Fall Time measurement. Rise/Fall Time is specified using an AC coupled 50 Ω voltage source and DC bias T. 2. Tighter specification ranges are available upon request.

Order Information	

For more information on this or other products and their availability, please contact your local JDSU account manager or JDSU directly at 1-800-498-JDSU (5378) in North America and +800-5378-JDSU worldwide, or via e-mail at customer.service@jdsu.com.

Sample: PL-VD0-00-S20-C0

Part Number	Description
PL-VD0-00-S20-C0	850 nm 2.5G VCSEL Die